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Abstract 

Numerous biomedical applications produce extremely large data sets through numeric simulations or 
physical data acquisition. Data compression has been an important research issue in the area of 
visualization. With the rapidly increasing of dimensions, resolutions and variables, the amount of volume 
data is growing exponentially, which makes compression become even more significant today. In this 
paper, we examine various lossless compression methods for their applicability for volume data. In the 
end, we discuss the future research on this topic. 
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1. Introduction 

It has been widely used in many fields of science and engineering, but the problem of large amount of 
data influences the development of visualization technology. With the rapid increase of volume data 
resolution, the emergence of time-varying and multi variable body data is widely used in science and 
engineering. Both efficient storage and efficient transmission of large medical data sets request efficient 
compression techniques. Although the computer hardware conditions continue to improve, such as the use 
of graphics hardware GPU accelerated the visualization of the process, but the development of hardware 
technology is still not up to catch up with the volume of bulk data. At present, the data compression 
technology is still an effective method to solve the large scale volume data interactive visualization. A 
variety of data compression techniques have been proposed to reduce the storage and transmission cost. 
2. Lossless compression method for volume data 

Lossless compression technology of volume data borrows the method of file and image compression 
technology, and the volume data is regarded as a collection of multiple two-dimensional data sheets 
(slice). For efficient storage and transmission of such data, compression algorithms are imperative. 
However, most volumetric datasets are used in biomedicine and other scientific applications where lossy 
compression is unacceptable. Compression methods reduce redundancy in volume data to provide a 
significantly more compact representation [1]. 
2.1 Run-length encoding compression 

Run-length encoding (RLE) is a very simple form of data compression in which runs of data (that is, 
sequences in which the same data value occurs in many consecutive data elements) are stored as a single 
data value and count, rather than as the original run. This is most useful on data that contains many such 
runs. Consider, for example, simple graphic images such as icons, line drawings, and animations. It is not 
useful with files that don't have many runs as it could greatly increase the file size. This technique is first 
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applied to the SLC file format in VolVis system [2]. S Forstmann[3] presented an algorithm for the 
visualization of large opaque volume data. And they showed that large run-length-encoded volume data 
can efficiently be visualized using CUDA. Because the probability of the same data value in the body 
space is big, so the RLE is better than the one by using RLE in the volume space, but the data difference 
can not improve the compression rate of RLE. 
2.2 Entropy encoding compression 

Entropy encoding is a more common type of lossless compression method. The general idea of an 
entropy encoder is to represent frequent voxel values with a short code, and infrequent voxel values with 
a longer code. Huffman coding[4], Shannon-Fano and Arithmetic coding[5] are some of the few well known 
entropy encoding techniques, many variations of which are extensively used in lossless data compression 
solutions. Huffman and Shannon-Fano coding are better suited for the two-pass (static) coding, while 
arithmetic coding lends itself better to single-pass (adaptive) coding. When applied to data sheet data, the 
compression effect is better. Fowler[6] proposed a new algorithm based on a combination of differential 
pulse-code modulation, DPCM and Huffman coding and results in compression of around 50% for a set of 
volume data files. Ibarria [7] presented a simple method for compressing very large and regularly sampled 
scalar fields. A new Lorenzo predictor was proposed, which estimates the value of the scalar field at each 
sample from the values at processed neighbors. And the residuals (differences between the actual and 
predicted values) are encoded using arithmetic coding.  
2.3 Variable Bit Length Encoding compression 

Not all voxel values require the same number of bits. Low intensity 8bit voxels (0..15) for example 
require a significantly smaller number of bits than high intensity voxel values (128-255) [8,9]. 
Consequently, we can save bits per voxels for low intensity voxel values, but need to invest bits to 
represent the code size for the voxels. Instead of storing that information for every voxel, we generate a 
run-length-encoded representation of segments of the same bit length. This is a reasonable assumption for 
scanned volumetric data, since most of background voxels will have low intensity noise voxel values that 
require a smaller number of bits than the actual voxels of the scanned object. 

In total, we need three data buffers that contain the segment lengths (segments of more than 28 
elements are split in two segments), the number of bits required for the voxel values of the segments, and 
finally the actual voxel value stream, encoded in variable bit length. In order to further reduce the space 
requirements, each of the data buffers is encoded with an entropy encoder. 

VBL allowed the best compression rates if the image data was provided through a difference buffer and 
in some cases if the whole data volume was compressed. VBLE is more suitable for the application of 
body data compression, but it is usually necessary to combine RLE to store the number of individual 
elements of encoding. A new compression method was proposed by Klajnsek[10] and the results proved 
that data coherence is exploited more sufficiently using proposed quadtree approach.  This paper 
introduces a new method for the compression of volumetric datasets. It is based on quadtree encoding.  
2.4 Dictionary-based encoding compression 

Dictionary-based encoding schemes are among the most popular schemes in data compression, where 
the encoded data is represented by codes that represent sequences that occur in the dataset. LZ77, LZ78 
and LZW are 3 kinds of basic encoding algorithm based on the dictionary structure of encoding method. 
LZV is improved algorithm of LZ77, and it is applied to medical MRI body data compression by 
Chow[11]. The advantage of the LZ77 and LZW approaches lies in the implicitly stored dictionaries, that 
do not require space for an explicitly stored one. Typical examples for LZ77 compression schemes are 
gzip (combined with Huffman coding) [12] and ZIP. Unix’s compress uses LZW. All dictionary-based 
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compression algorithms clearly benefited, if the dataset was compressed as a whole volume and if a 
difference buffer was used for compression. 
2.5 Burrows–Wheeler transform compression 

The Burrows–Wheeler transform(BWT, also called block-sorting compression)[13,14], is an algorithm 
used in data compression techniques such as bzip2. It was invented by Michael Burrows and David 
Wheeler in 1994 while working at DEC Systems Research Center in Palo Alto, California. It is based on a 
previously unpublished transformation discovered by Wheeler in 1983. 

When a character string is transformed by the BWT, none of its characters change value. The 
transformation permutes the order of the characters. If the original string had several substrings that 
occurred often, then the transformed string will have several places where a single character is repeated 
multiple times in a row. This is useful for compression, since it tends to be easy to compress a string that 
has runs of repeated characters by techniques such as move-to-front transform and run-length encoding. 
The BZIP2 algorithm has better compression effect on the body space and the differential data 
compression. For the popular BZIP2 compression algorithm, the BWT is combined with a Huffman 
coding, which encodes the permuted input block. Similar to the previous approaches, BZIP2’s 
compression rate increased if the whole volume was compressed instead of single image slices. In this 
case, it also benefited from a difference buffer. 
2.6 Wavelet transform compression 

Wavelet transformations are the basis for many the state-of-the-art compression algorithms, including 
the JPEG-2000 standard. And wavelet method is often used in the lossless compression of medical data. 
The 3D medical data (such as CT, MRI) is stored in the form of multiple 2D images. So in most medical 
data compression, they are considered as a collection of multi-dimensional gray images. Ridgelet and 
Curvelet are the latest research in recent years. Sanchez [13] proposed a symmetry-based scalable lossless 
compression method for 3D medical images using the 2D integer wavelet transform and the embedded 
block coder with optimized truncation (EBCOT). A new inter-slice DPCM prediction method exploits the 
correlation between slices. Performance evaluations on real 3D medical images show an average 
improvement of up to 17 % in lossless compression ratios when compared to the state-of-the-art 
compression methods including 3D-JPEG2000, JPEG2000 and H.264 intra-coding. Krishnan [14] 

presented a scheme that uses JPEG2000 and JPIP (JPEG2000 Interactive Protocol) to transmit data in a 
multi-resolution and progressive fashion. And then they presented a prioritization that enables the client to 
progressively visualize scene content from a compressed file. In our specific example, the client is able to 
make requests to progressively receive data corresponding to any tissue type. The resulting system is 
ideally suited for client-server applications with the server maintaining the compressed volume data, to be 
browsed by a client with a low bandwidth constraint. Compression method [15,16]based on 3D wavelet 
decomposition is applied to medical data lossless compression. A major criterion for the compression 
quality is the type of wavelet base-functions that are used. Typical examples are the Haar-wavelets 
(usually only used for description of the principle)[17] or B-Spline functions. Li Zongjian[18,19] studied the 
cubic data compression algorithm based on ridgelet transform. And the result indicated that the ridgelet, as 
a new analytic tool，has the good performance for describing the signals which have super-plane 
singularities in high dimensions. Yuancheng Li [20]proposed a novel scheme for image compression by 
means of the second generation curvelet transform and support vector machine (SVM) regression. 
Compression is achieved by using SVM regression to approximate curvelet coefficients with the 
predefined error. Compared with image compression method based on wavelet transform, experimental 
results showed that the compression performance of this method gains much improvement. Moreover, the 
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algorithm works fairly well for declining block effect at higher compression ratios. 
3 Current problems 

At present, most of the compression work is based on the integer type, and the research on the data 
compression of real type is relatively small. Because of the small correlation of the mantissa of real type data, 
compression process is more difficult. Compressing floating-point time-varying volume data and achieving 
both high compression rate and near lossless are challenging[21]. Lindstrom [22] proposed a simple scheme 
for lossless, online compression of floating-point data that transparently integrates into the I/O of many 
applications. A plug-in scheme for data-dependent prediction makes our scheme applicable to a wide 
variety of data used in visualization, such as unstructured meshes, point sets, images, and voxel 
grids. Unlike previous schemes, their method also adapts well to variable-precision floating-point and 
integer data. Fout [23]proposed two prediction-based compression methods that share a common 
framework, which consists of a switched prediction scheme wherein the best predictor out of a preset 
group of linear predictors is selected. The results demonstrated that their polynomial predictor, APE, is 
comparable to previous approaches in terms of speed but achieves better compression rates on average. 
ACE, their combined predictor, while somewhat slower, is able to achieve the best compression rate on 
all datasets, with significantly better rates on most of the datasets. To deal with the performance 
bottlenecks of hard-disk transfer rate and graphics bus bandwidth, J Mensmann[24] presented a hybrid 
CPU/GPU scheme for lossless compression and data streaming that combines a temporal prediction 
model, which allows to exploit coherence between time steps, and variable-length coding with a fast 
block compression algorithm [25]. 
 Nevertheless, long data transfer times and GPU memory size limitations are often the main limiting 
factors, especially for massive, time-varying or multi-volume visualization, as well as for networked 
visualization on the emerging mobile devices. So it is significant for developing flexible and fast 
decompression algorithm based on GPU completely. 
With the development of mobile phones and other mobile platforms, the development of cloud technology, 

network and mobile body rendering will get more attention, the algorithm used in desktop computing is not 
necessarily directly applied to these hardware platforms, the need for further research.) 

Nowadays, even though the GPU could keep up with the growing amount of volume data by boosting 
computation performance, the transfer bandwidth between different hardware may become insufficient 
especially for rendering the high-resolution volume data, which results in an important problem. This 
problem becomes even more conspicuous for the time-varying volume data. 
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