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Abstract 

With the widespread popularity of wireless mobile devices, the demand of emerging applications has 
been proposed, such as video telephony and HD video play. The new applications require the wireless 
mobile devices equipped with processors have better performance and lower power consumption. The 
current generation of devices employs a combination of general-purpose processors, digital signal 
processors, and hardwired accelerators to provide giga-operations-per-second performance on milliWatt 
power budgets [1]. Such heterogeneous organizations are inefficient to build and maintain, meanwhile, it 
will course waste of silicon chip area and power. The next generation of wireless mobile computing 
devices needs to have higher data transfer rate, more complex algorithms, as well as low power 
consumption. At this stage, mobile devices are unable to meet demand in the computing performance and 
power consumption. It necessarily designs the next-generation processors for mobile devices to meet the 
application requirements. This paper gives out a variable-width SIMD processor architecture’s controller 
and data transfer module designing method. 
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1. Introduction 

For 4G wireless communication, a lot of work has been done in the research of designing 
high-performance and low-power processors, such as SODA [2], Ardbeg [3], AnySP [1], etc. The 
controller design mainly focuses on improving the computing performance and versatility of processor, 
and balancing power consumption. The major way to improve computing performance is to effectively 
ensure the data-level parallelism. With the emergence of more and more applications, more sophisticated 
algorithms will be implemented in wireless mobile devices. The natural lengths of these algorithms are 
different, so it is necessarily provide a variable-width of the SIMD processor architecture to adapt the 
natural length of a variety of algorithms. On the observation of many embedded applications, 25% of the 
registers occupy 75-92% of the entire register file access [4]. Therefore, to select the most frequently used 
registers and put those in a relatively smaller power register file will reduce the power consumption of the 
entire register file. 

On the basis of the pioneering research, the proposed architecture is shown in Fig. 1. Not only does the 
controller control the program flow, but also transfer PE (process element) instructions for PE decoders 
and initialize the data transfer module. Firstly, global memory’s data is transferred by data transfer module 
into the interface module, and then stored into the local memory of each PE. At the same time, the PE 
instructions which are passed by controller are buffered into the buffer register file. When the transferring 
work has been accomplished, PE instructions are issued from the register file to the decoder of each PE. 
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As described above, the controller plays an important role in the architecture. In this paper, take 
three-stage pipeline to achieve the controller design. Although pipelining can improve the throughput of 
the controller, it needs to address the problems of branch and data hazard. In summary, the structure of 
three-stage pipeline can effectively reduce the complexity of the controller design and can meet the design 
requirements better. 

 

 

Figure 1. The architecture diagram 
 
Each PE consists of 8 local memory banks, 8 register files, 64 groups of ALU + Multiplier + Adder + 

Loader (AMAL), an adder tree and a decoder. The work of decoding PE instructions is not completed in 
controller but in the decoder of each PE. Data transfer module passes the data into the 8 local memory 
banks. Load instructions stores local memory’s data into the specified entry of 8 register files or partial of 
them. The PE decoder decodes the PE instructions, and then generates control signals for AMAL, adder 
tree, etc. 
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Figure 2. The PE architecture diagram 
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The paper is organized as follows. Section Ⅱ describes the instruction sets of the scalar and data 
transfer. Section Ⅲ explains the controller design. Section Ⅳ introduces the module and interface that 
assist the controller to complete the data transfer. Finally, a conclusion is given in Section V. 
2. Scalar and Data Transmission Instruction Set 

In the proposed architecture, the instruction set consists of three parts: scalar, PE, and data transfer 
instruction sets. This article discusses the controller design, and the PE instructions are not introduced. As 
follows is the scalar and data transfer instruction sets: 

 
Table 1. Scalar and data transfer instruction sets 

Table 1： 
Table 1： 

Table 1： 
Table 1： 

Table 1： 
Table 1： Data Transfer Instruction 
Table 1： Single-entry data loaded instruction 
Table 1： 2-entry data loaded instruction 
Table 1： 4-entry data loaded instruction 
Table 1： 8-entry data loaded instruction 
Table 1： 

 
The proposed instruction set uses 32-bit instructions. The instruction format of arithmetic and logic 

instruction is similar to the MIPS instruction set’s R-type and I-type. Those instructions complete the 
arithmetic and logic calculations for two registers, or an immediate and a register. To sequentially execute 
instructions, the program counters increments by 4 after each instruction. The Control instructions modify 

the program counter to skip over sections of code or to go back to repeat previous code. In the data 
transfer/load instructions, the MOV instruction is decoded in the controller’s decoder. The produced 

signals are used to initialize the data transfer module. The four load instructions are decode in the interface 
module’s load decoder. They focus on how to load data from PE’s local memory to PE’s register file. 
 

3. Controller Design 

The major work of the controller is controlling the program flow, initializing the data transfer module, 
identifying the PE & Load instruction and passing them to the interface module’s buffer register file. It 
consists of datapath, decoder, and instruction memory. In order to improve the throughput of the overall 
structure, design the dedicated data transfer module to assist the controller to complete data transfer from 
the global memory to the local memory of each PE. 

(1) Decoder 
The decoder primarily decodes the scalar and data transfer instructions. All kinds of instructions are 

stored in the instruction memory. In the Fetch stage, an instruction is fetched from the instruction memory. 
It is passed to the controller’s decoder in the Decode stage. If it is a scalar or data transfer instruction, 
controller’s decoder gives the corresponding control signal for datapath or data transfer module. But, when 
controller’s decoder encounters a PE instruction or a Load instruction, it does not execute any operations 
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and only passes the instruction to the interface between the data transfer module and PEs. The interface is 
responsible for issuing the PE instruction to PE decoder at a particular time and reading/storing data for 
each PE’s local memory banks. 

(2) Datapath 
The datapath is mainly composed by an arithmetic logic unit, a comparison unit, and a register file. 

The wireless communication and high-definition video algorithms are implemented in the PE array. 
Therefore, the arithmetic logic unit of controller completes simple arithmetic operations, logic operations 
and shift operations. Comparing operation is completed in the comparison unit. The register file is 
composed of 30 general purpose registers r1 to r30, a constant zero register r0, and a specially used to 
store the return address register r31. 

(3) PC Logic 
PC Logic completes the selection of the next instruction by two 2-way multiplexers, a register, and an 

added. As shown in Fig. 3, two multiplexers are distinguished as A and B from left to right. The A is used 
to select whether to perform branch. The B is used to determine whether to execute jump. Address of the 
next instruction is selected through the two multiplexers A and B. On clock rising edge, the address is 
passed to the instruction memory to fetch the instruction. At the same time, pc is word aligned, so the sum 
of pc and 4 is passed to the multiplexer A for the next instruction selection. But when it encounters a jump 
instruction, the jump destination address pcjD and control signal jumpD are generated in the Decode stage 
and later passed into the Fetch stage. The jump instruction does not need to determine condition, so it’s 
work can be achieved in the Decode stage; if it is a branch instruction, the branch destination address pcbE 
has been generated in the Decode stage, but the control signal bE is generated in the Execute stage. 
Because the branch instruction needs to determine condition in the Execute stage. 

 

 
Figure 3. PC Logic 

 
In the Decode stage, the control signal jumpD is generated by the decoder. JumpD is not only passed to 

the PC logic, but also passed to the inter-stage registers between the Fetch stage and Decode stage as a 
refresh signal. When jumpD is 1, it refreshes the registers to ensure that the instruction following the jump 
instruction does not enter the Decode stage to ensure the correct execution of the program. The control 



International Journal of Applied Mathematics and Computing Science (ISSN 2333-2425) 
 

~ 48 ~ 

signal bE is different to jumpD. Shown in Fig. 4, bE = (~zeroE & S15) | (S9 & cpresultE [0]), which 
selects the next instruction address from the pc + 4 and branch address. The S15 and S9 control two kind 
of branches. The S11 and S12 tell the arithmetic logic unit and comparison unit to do what. When a branch 
instruction is in the Execute stage, the Decode stage and Fetch stage have separately entered an instruction. 
As similar to the jump instruction, the inter-stage registers are refreshed by the bE. 

 

 
Figure 4. Branch Control Signal Generating Logic 

 
The major work of the address generation unit is to produce the next instruction address for the branch 

and jump instruction. The jump destination address pcjD and the branch destination address pcbD are 
produced by the address generation unit in the Decode stage. The pcjD is sent to the Fetch stage in Decode 
stage, but the pcbD is passed in Execute stage. 

 

 
Figure 5. Address Generation Unit 

 
Shown in Fig. 4, the address generation unit consists of a shifter, three 2-way multiplexers, and an 

adder. The control signals S1, S2, S3 are generated by the decoder in the Decode stage. The shifter’s 
operation is that the extimmD is left-shifted by 2 to multiply it by 4. After the S1 controls 2-way 
multiplexer to choose the simmD from extimmD and extimmD × 4, then simmD is passed to the adder to 
calculate the sum of pcD and simmD, which is the destination address of the branch or jump. The S2 
controls the multiplexer to support the JLINK instruction. The S3 controls anti-2-way multiplexer for 
jump and branch instruction to pass the address to pcjD or pcbD. 

(4) Hazards 
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When one instruction is dependent on the results of another that has not yet completed a hazard occurs 
[5]. For solving this problem，When the instruction will write back result into the register file in the 
Execute stage, it compares the wrote register and the read register of following instruction. When the 
hazard has been occurred, the result is forwarded from the execute stage of the previous instruction to the 
decode stage of the dependent next instruction. In the Execute stage, there is a special hazard unit to 
process this matter. 

 

 
Figure 6. Data Hazard Unit 

 
Shown in Fig. 5, when an instruction writes back the result into the register file, the control signal S14 

is 1, the data hazard unit solves data hazard with forwarding. Otherwise the unit will be bypassed. The two 
operands of hazard unit are from the decode stage and execute stage. The Decode stage passes the identity 
of read register and the Execute stage passes the identity of the register wrote. The signal haE and hbE 
choose the forwarded value as the operand for the next instruction. 
 

4. Data Transfer 

To effectively support the data-level parallelism, it must timely pass data for the SIMD array. Design 
data transfer module and interface module to support this work. 

(1) Data Transfer Module 
Without the assistance of controller, the data transfer module independently transfers bulk data to the 

local memory banks of each PE. When the controller fetches the data transfer instruction in the Fetch stage, 
it will pass the initialization information to the data transfer module in the Decode stage. Then the 
controller continues to perform the program, and the module starts transferring data for each PE with the 
initialization information. The controller and the data transfer module execute in parallel. With assisting of 
the data transfer module, the workload of controller has been reduced, and it also can timely transfer data 
for each PE. 

The Mov instruction format is as follow: 
 

Table 2. Mov instruction format 
31       26 25     22  21           16 15                                  0

opcode bank_index count initial_address 
010010    
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The operation is determined solely by the opcode, and the Mov instruction’s opcode field is 0100102. 
bank_index is the index of each PE’s local memory bank which will receive data. The number of 
transferring data is the count field. The initial_address field indicates the first reading data address in 
global memory. For example, bank_index, count, and initial_address fields are 00012, 0000112, and 
0(00000000000000002), respectively. The data transfer module will transfer three 128bit numbers to each 
PE’s local memory bank1. In every cycle, the data transfer module only transfers one 128bit number and 
1bit write-enable signal to each PE’s special bank. So when once transfer operation has been finished, 
determine the result of count – 1 is greater than 0. If the result is greater, data transfer work continues to 
do and vice versa. 

b) Interface Module 
Sometimes the data transfer module and controller execute in parallel. When the data transfer module 

is working, the PE or Load instructions passed from the controller are buffered into the buffer register file 
of interface module. After data transfer work has finished, the buffered instructions are fetched from the 
buffer register file and passed to the load decoder of interface module. Then the load decoder identifies the 
past instruction. If it is a load instruction, the load decoder executes decoding operation; if it is a PE 
instruction, the load decoder only passes it into the PE decoder. But if there is not any data transfer, PE 
instructions does not need to be buffered into the register file and simply passed into the PE decoder. 
 

 

Figure 7. PE0 Interface Module 
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As the name suggests the load decoder focuses on the operation of decoding load instructions. When 
the load decoder identifies the instruction which is fetched from the buffer register file is a load instruction, 
it products a read-enable signal. With the assistance of the algorithm width signal, it controls the reading 
operation of PE local memory Bank0~Bank7. Because most of the wireless communications and 
high-definition video algorithms just need streaming data, reading data is sequential. The reading and 
writing address of each bank are produced sequentially. The load instruction based on the algorithm width 
signal can complete the loading operation by the following modes: single-entry data loading, 2-entry data 
loading, 4-entry data loading, and 8-entry data loading. 

In addition, when the instruction is not a load instruction, the load decoder does not perform any 
operation and simply passes it into the decoder of each PE. 

 
5. Conclusion 

In this paper, a design of the controller and the data transfer module is presented. The controller 
designing focused on controlling the program flow and initializing the data transfer module. The work of 
decoding PE instructions is completed in the PE decoder. The data transfer module executed the work of 
data transfer without the assist of controller. By simulating the architecture on Xilinx ISE Design Suite, 
the fundamental modules have been designed and tested. The results of simulation verify the correctness 
of the controller and data transfer module design. 
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